Pages

Friday, March 6, 2015

Fwd: Mars: The Planet that Lost an Ocean's Worth of Water



Sent from my iPad

Begin forwarded message:

From: Kent Castle <kent.d.castle@hotmail.com>
Date: March 6, 2015 at 4:48:14 PM CST
To: Choban Peter <peter.s.choban@aero.org>, Baird Darren <darren.t.baird@nasa.gov>, Bentz Jerry <bentz@sbcglobal.net>, Patterson James <w8ljz@aol.com>, Astrology Valkyrie <astrogoddess@valkyrieastrology.com>, Martin Bobby <bobbygmartin1938@gmail.com>
Subject: FW: Mars: The Planet that Lost an Ocean's Worth of Water


 

From: gjohnson144@comcast.net
To: gjohnson144@comcast.net
Subject: FW: Mars: The Planet that Lost an Ocean's Worth of Water
Date: Fri, 6 Mar 2015 09:51:34 -0600

 

Mars: The Planet that Lost an Ocean's Worth of Water

 

Munich, Germany (SPX) Mar 06, 2015

 

This artist's impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars's northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres. Image courtesy ESO/M. Kornmesser/N. Risinger (skysurvey.org). For a larger version of this image please go here.

 

A primitive ocean on Mars held more water than Earth's Arctic Ocean, and covered a greater portion of the planet's surface than the Atlantic Ocean does on Earth, according to new results published this week. An international team of scientists used ESO's Very Large Telescope, along with instruments at the W. M. Keck Observatory and the NASA Infrared Telescope Facility, to monitor the atmosphere of the planet and map out the properties of the water in different parts of Mars's atmosphere over a six-year period. These new maps are the first of their kind. The results appear online in the journal Science.

 

About four billion years ago, the young planet would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars's northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres.

 

"Our study provides a solid estimate of how much water Mars once had, by determining how much water was lost to space," said Geronimo Villanueva, a scientist working at NASA's Goddard Space Flight Center in Greenbelt, Maryland, USA, and lead author of the new paper. "With this work, we can better understand the history of water on Mars."

 

The new estimate is based on detailed observations of two slightly different forms of water in Mars's atmosphere. One is the familiar form of water, made with two hydrogen atoms and one oxygen, H2O. The other is HDO, or semi-heavy water, a naturally occurring variation in which one hydrogen atom is replaced by a heavier form, called deuterium.

 

As the deuterated form is heavier than normal water, it is less easily lost into space through evaporation. So, the greater the water loss from the planet, the greater the ratio of HDO to H2O in the water that remains [1].

 

The researchers distinguished the chemical signatures of the two types of water using ESO's Very Large Telescope in Chile, along with instruments at the W. M. Keck Observatory and the NASA Infrared Telescope Facility in Hawaii [2]. By comparing the ratio of HDO to H2O, scientists can measure by how much the fraction of HDO has increased and thus determine how much water has escaped into space. This in turn allows the amount of water on Mars at earlier times to be estimated.

 

In the study, the team mapped the distribution of H2O and HDO repeatedly over nearly six Earth years - equal to about three Mars years - producing global snapshots of each, as well as their ratio. The maps reveal seasonal changes and microclimates, even though modern Mars is essentially a desert.

 

Ulli Kaeufl of ESO, who was responsible for building one of the instruments used in this study and is a co-author of the new paper, adds: "I am again overwhelmed by how much power there is in remote sensing on other planets using astronomical telescopes: we found an ancient ocean more than 100 million kilometres away!"

 

The team was especially interested in regions near the north and south poles, because the polar ice caps are the planet's largest known reservoir of water. The water stored there is thought to document the evolution of Mars's water from the wet Noachian period, which ended about 3.7 billion years ago, to the present.

 

The new results show that atmospheric water in the near-polar region was enriched in HDO by a factor of seven relative to Earth's ocean water, implying that water in Mars's permanent ice caps is enriched eight-fold. Mars must have lost a volume of water 6.5 times larger than the present polar caps to provide such a high level of enrichment. The volume of Mars's early ocean must have been at least 20 million cubic kilometres.

 

Based on the surface of Mars today, a likely location for this water would be the Northern Plains, which have long been considered a good candidate because of their low-lying ground. An ancient ocean there would have covered 19% of the planet's surface - by comparison, the Atlantic Ocean occupies 17% of the Earth's surface.

 

"With Mars losing that much water, the planet was very likely wet for a longer period of time than previously thought, suggesting the planet might have been habitable for longer," said Michael Mumma, a senior scientist at Goddard and the second author on the paper.

 

It is possible that Mars once had even more water, some of which may have been deposited below the surface. Because the new maps reveal microclimates and changes in the atmospheric water content over time, they may also prove to be useful in the continuing search for underground water.

 

This research was presented in a paper entitled "Strong water isotopic anomalies in the Martian atmosphere: probing current and ancient reservoirs", by G. VIllanueva et al., to appear online in Science on 5 March 2015. The team is composed of G.L. Villanueva (NASA Goddard Space Flight Center, Greenbelt, USA; Catholic University of America, Washington, D.C., USA), M.J. Mumma (NASA Goddard Space Flight Center), R.E. Novak (Iona College, New York, USA), H.U. Kaufl (ESO, Garching, Germany), P. Hartogh (Max Planck Institute for Solar System Research, Gottingen, Germany), T. Encrenaz (CNRS - Observatoire de Paris-Meudon, Paris, France), A. Tokunaga (University of Hawaii-Manoa, Hawaii, USA), A. Khayat (University of Hawaii-Manoa) and M. D. Smith (NASA Goddard Space Flight Center).

 

 

 

Research Suggests Mars Once Had More Water than Earth's Arctic Ocean

 

Pasadena CA (JPL) Mar 06, 2015

 

NASA scientists have determined that a primitive ocean on Mars held more water than Earth's Arctic Ocean and that the Red Planet has lost 87 percent of that water to space. Image courtesy NASA/GSFC. For a larger version of this image please go here.

 

A primitive ocean on Mars held more water than Earth's Arctic Ocean, according to NASA scientists who, using ground-based observatories, measured water signatures in the Red Planet's atmosphere.

 

Scientists have been searching for answers to why this vast water supply left the surface. Details of the observations and computations appear in Thursday's edition of Science magazine.

 

"Our study provides a solid estimate of how much water Mars once had, by determining how much water was lost to space," said Geronimo Villanueva, a scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the new paper. "With this work, we can better understand the history of water on Mars."

 

Perhaps about 4.3 billion years ago, Mars would have had enough water to cover its entire surface in a liquid layer about 450 feet (137 meters) deep. More likely, the water would have formed an ocean occupying almost half of Mars' northern hemisphere, in some regions reaching depths greater than a mile (1.6 kilometers).

 

The new estimate is based on detailed observations made at the European Southern Observatory's Very Large Telescope in Chile, and the W.M. Keck Observatory and NASA Infrared Telescope Facility in Hawaii. With these powerful instruments, the researchers distinguished the chemical signatures of two slightly different forms of water in Mars' atmosphere. One is the familiar H2O. The other is HDO, a naturally occurring variation in which one hydrogen is replaced by a heavier form, called deuterium.

 

By comparing the ratio of HDO to H2O in water on Mars today and comparing it with the ratio in water trapped in a Mars meteorite dating from about 4.5 billion years ago, scientists can measure the subsequent atmospheric changes and determine how much water has escaped into space.

 

The team mapped H2O and HDO levels several times over nearly six years, which is equal to approximately three Martian years. The resulting data produced global snapshots of each compound, as well as their ratio. These first-of-their-kind maps reveal regional variations called microclimates and seasonal changes, even though modern Mars is essentially a desert.

 

The research team was especially interested in regions near Mars' north and south poles, because the polar ice caps hold the planet's largest known water reservoir. The water stored there is thought to capture the evolution of Mars' water during the wet Noachian period, which ended about 3.7 billion years ago, to the present.

 

From the measurements of atmospheric water in the near-polar region, the researchers determined the enrichment, or relative amounts of the two types of water, in the planet's permanent ice caps. The enrichment of the ice caps told them how much water Mars must have lost - a volume 6.5 times larger than the volume in the polar caps now. That means the volume of Mars' early ocean must have been at least 20 million cubic kilometers (5 million cubic miles).

 

Based on the surface of Mars today, a likely location for this water would be in the Northern Plains, considered a good candidate because of the low-lying ground. An ancient ocean there would have covered 19 percent of the planet's surface. By comparison, the Atlantic Ocean occupies 17 percent of Earth's surface.

 

"With Mars losing that much water, the planet was very likely wet for a longer period of time than was previously thought, suggesting it might have been habitable for longer," said Michael Mumma, a senior scientist at Goddard and the second author on the paper.

 

NASA is studying Mars with a host of spacecraft and rovers under the agency's Mars Exploration Program, including the Opportunity and Curiosity rovers, Odyssey and Mars Reconnaissance Orbiter spacecraft, and the MAVEN orbiter, which arrived at the Red Planet in September 2014 to study the planet's upper atmosphere.

 

In 2016, a Mars lander mission called InSight will launch to take a first look into the deep interior of Mars. The agency also is participating in ESA's (European Space Agency) 2016 and 2018 ExoMars missions, including providing telecommunication radios to ESA's 2016 orbiter and a critical element of the astrobiology instrument on the 2018 ExoMars rover. NASA's next rover, heading to Mars in 2020, will carry instruments to conduct unprecedented science and exploration technology investigations on the Red Planet.

 

NASA's Mars Exploration Program seeks to characterize and understand Mars as a dynamic system, including its present and past environment, climate cycles, geology and biological potential. In parallel, NASA is developing the human spaceflight capabilities needed for future round-trip missions to Mars in the 2030s.

 

 

NASA Research Suggests Mars Once Had More Water than Earth's Arctic Ocean

A primitive ocean on Mars held more water than Earth's Arctic Ocean, according to NASA scientists who

 

LA Times

 

NYTimes

Ancient Mars Had an Ocean, Scientists Say 

 

 

No comments:

Post a Comment